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Abstract

Background and aims: Seattle protocol biopsies for Barrett's Esophagus (BE) sur-

veillance are labour intensive with low compliance. Dysplasia detection rates vary,

leading to missed lesions. This can potentially be offset with computer aided

detection. We have developed convolutional neural networks (CNNs) to identify

areas of dysplasia and where to target biopsy.

Methods: 119 Videos were collected in high‐definition white light and optical

chromoendoscopy with i‐scan (Pentax Hoya, Japan) imaging in patients with

dysplastic and non‐dysplastic BE (NDBE). We trained an indirectly supervised CNN

to classify images as dysplastic/non‐dysplastic using whole video annotations to

minimise selection bias and maximise accuracy. The CNN was trained using 148,936

video frames (31 dysplastic patients, 31 NDBE, two normal esophagus), validated on

25,161 images from 11 patient videos and tested on 264 iscan‐1 images from 28

dysplastic and 16 NDBE patients which included expert delineations. To localise

targeted biopsies/delineations, a second directly supervised CNN was generated

based on expert delineations of 94 dysplastic images from 30 patients. This was

tested on 86 i‐scan one images from 28 dysplastic patients.

Findings: The indirectly supervised CNN achieved a per image sensitivity in the test

set of 91%, specificity 79%, area under receiver operator curve of 93% to detect

dysplasia. Per‐lesion sensitivity was 100%. Mean assessment speed was 48 frames

per second (fps). 97% of targeted biopsy predictions matched expert and histo-

logical assessment at 56 fps. The artificial intelligence system performed better than

six endoscopists.
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Interpretation: Our CNNs classify and localise dysplastic Barrett's Esophagus

potentially supporting endoscopists during surveillance.

K E YWORD S

Barrett's Esophagus, artificial intelligence, convolutional neural networks, computer aided
detection, neoplasia, AI, CAD, early neoplasia, early detection, CNN

INTRODUCTION

Barrett's Esophagus (BE) is associated with increased progression

risk to oesophageal cancer (EAC), progressing from non‐dysplastic
Barrett's Esophagus (non‐dysplastic BE (NDBE)) to low grade

dysplasia (LGD), high grade dysplasia (HGD) and then EAC. The

overall 5‐year survival rate of EAC is less than 20%1 but early

neoplasia in BE can be treated endoscopically with eradication rates

of more than 90%.2

The current standard of care for BE surveillance is to take biopsies

every 2 cm as part of the Seattle protocol. This is time consuming and

may suffer from sampling error3 and poor compliance.4 Despite ad-

vances in endoscopic imaging, BE dysplasia is still missed.5 A meta‐
analysis showed that amongst adults with NDBE at index endoscopy

and prolonged follow up, 25% of EAC's are diagnosed within a year of

the index procedure. They were classified as a missed diagnosis.6

There is growing interest in the use of computer aided detection

(CAD) of early lesions in the gastrointestinal tract. To date, this has

focused on detection of colonic polyps7–9 but CAD is likely to become

increasingly important for BE neoplasia detection and several studies

in recent years investigate this.10,11 Artificial intelligence (AI) tech-

nology could lead to less random biopsies with lower histopathology

costs, shorter procedures and early endoscopic therapy could offset

the costs of an oesophagectomy/radiotherapy. This is increasingly

important in view of the COVID‐19 pandemic induced reduction in

routine endoscopic provision.12 There may still be an issue with the

detection of invisible dysplasia. This will be answered with rando-

mised control trials where seattle protocol biopsies are compared

against AI predictions.

With advances in endoscopic optical technology, classification

protocols have been developed based on vascular architecture and

mucosal pit pattern to improve dysplasia detection.13–15 It might

therefore be possible to train a CAD system to use these features.

I‐scan (Pentax Hoya, Japan) is a virtual chromoendoscopy tech-

nique that uses post processing technology to provide contrast and

surface enhancement. There are 3 modes – i‐scan 1 (surface

enhancement), i‐scan‐2 (contrast enhancement), i‐scan 3 (tone

enhancement). I‐scan 1 has become the default equivalent of high‐
definition white light (WL) with the Pentax system. It is the best

imaging mode for lesion detection (Supplementary Figure 1).16 Pre-

vious publications from our group have shown that utilisation of

optical enhancement with i‐scan is superior to WL in BE and there-

fore has paved the way for i‐scan to be the standard of care in most

units using this platform.15,17

Studies have investigated development of neural networks for

dysplasia detection in the Esophagus with some promising results

using Olympus and Fuji imaging.10,18 However, to the best of our

knowledge, no studies have developed a neural network using Pentax

i‐scan imaging. The studies to date have trained neural networks on

limited number of high quality still images. These lack generalisability,

particularly as most of the testing and training data sets originated

from the same centre or country.19,20 These factors may limit real

time implementation.21

The primary aims of this multi‐centre study were first, to develop
a neural network to detect dysplasia within BE by classifying an

image as dysplastic or non‐dysplastic and second to identify a point

of interest for targeted biopsies. Secondary aims were to achieve

these goals fast enough to allow real‐time dysplasia detection,

compare the performance of the system on i‐scan 1 versus WL im-

ages and compare the performance versus endoscopists.

Key summary

Summarise the established knowledge on this subject

� Barrett's esophagus is associated with an increased risk

of progression to esophageal cancer.

� Despite advances in endoscopic imaging early cancer in

BE is still being missed.

� Studies have investigated neural networks for dysplasia

detection using Fuji and Olympus systems. No studies

have done so using Pentax imaging.

What are the significant and/or new findings of this study?

� Demonstrate a computer aided detection (CAD) system

that is able to detect BE dysplasia with high accuracy on

a per image and patient level and localise areas of in-

terest with targeted biopsies with high sensitivities.

� This is the first study demonstrating an Artificial intelli-

gence (AI) system in BE using the I‐scan/Pentax imaging
system.

� We demonstrate and compare different approaches to

development of algorithms for detection/localisation of

BE to help identify the best approach to training these

systems.
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METHODS

Patient recruitment

Patients attending for BE assessment at four expert European

centres were recruited. All cases were collected prospectively

including 86 that were collected prospectively in a previous BE

imaging study.15,17,22 Patients were excluded if there was evi-

dence of oesophageal varices, strictures or oesophageal ulcera-

tion. The study was approved by the Cambridge central research

ethics committee (REC Reference No. 18/EE/0148) for UK sites.

European centres received ethical approval from local commit-

tees for use of images for this and other imaging‐based research

projects.

Endoscopic procedures and video collection

All videos and still images were collected by six expert endo-

scopists (RJH, MRB, VS, RB, JM, KR). We defined these as endo-

scopists with more than 5 years' experience of BE endotherapy

and who perform endotherapy procedures weekly in BE expert

centres as defined by the European Society of Gastrointestinal

Endoscopy guidelines.23

Videos were prospectively collected using the Pentax endoscopy

system (OPTIVISTA plus, EPK‐i7000, EG‐2990i, EG29‐i10). Mucus

lining the Esophagus was removed using a simeticone and water

solution. The endoscopist then performed a ‘pull through’ withdrawal

of the endoscope from the gastroesophageal junction to the maximal

extent of BE. Procedures were recorded in high‐definition WL and

i‐scan one imaging modes in patients with dysplastic lesions in BE

(LGD/HGD/EAC) and patients with NDBE. I‐scan 1 was the default

imaging modality in the collected data in all centres. ‘Pull throughs’

were also collected in WL for most patients.

Tissue acquisition and histology

BE with no suspicion for dysplasia was biopsied as per the Seattle

protocol. Areas suspicious for dysplasia either were target biopsied

or resected by endoscopic mucosal resection (EMR). Histology was

reviewed by expert BE histopathologists with more than 10 years'

experience. Cases of suspected dysplasia were reviewed by two

different BE histopathologists in each expert centre.
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F I GUR E 1 Breakdown of the data set in the classification/segmentation models and the potential importance of each model output in the

computer aided detection (CAD) system. CAD; Computer aided detection, *In one patient, the video segment of esophagus was split into two
segments: dysplastic and NDBE. The former was used for training and the latter for testing
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Creation of a gold standard on video segments

A computer vision annotation tool (Odin Vision, London, UK) was used

to annotate a sequence of video frames. Annotation confirmed that

dysplasia was present within individual frames without defining the

position. Gold standard was determined from histology of EMR spec-

imens or biopsies and the annotation segmentsmatched these areas on

the videos. In NDBE patients, all the frames from the Esophagus,

including squamous mucosa, were included. The dysplastic and non‐
dysplastic frames were used to train and validate a classification con-

volutional neural network (CNN; Supplementary Figure 2).

Creation of a gold standard on still images

High and moderate quality BE images were delineated for the pres-

ence of dysplasia by three expert Barrett's endoscopists (RH, MB, VS;

Supplementary Figure 2). High quality images were defined as images

with clear views of lesions within a distended Esophagus and no

artefact (blood/mucus). Moderate quality images contained some

artefacts but there remained reasonable views of the lesion to make

a diagnosis. The quality of images was determined by the same

clinician on the study team (MH).

Each image was delineated by two of the three expert endo-

scopists. The delineated areas all had confirmed dysplasia on histol-

ogy. Delineations were used to test the performance of the CNN's.

We test the performance of the targeted biopsy predictions gener-

ated by the CNN on two levels ‐ against all areas annotated by ex-

perts and then against the small area of overlap between experts.

Model 1: Classification convolutional neural network
for dysplasia detection within BE

We trained a CNN with a Resnet101 architecture to classify images

into dysplastic or non‐dysplastic using randomly selected frames

from annotated videos. For each pixel, the CNN predicted a number

between 0 (no dysplasia) and 1 (dysplasia present). Further algorithm

development details can be found in the supplementary section.

A directly supervised learning classification network is trained on

BE images which have been individually delineated for areas of

dysplasia (methodology for training model 2). We derived heat maps

for areas of interest from the classification CNN using an indirectly

supervised learning approach. This relies on informing the model

whether an image contains dysplasia (Methodology for training model

1). The network works out what constitutes an abnormality for itself.

Classification model data set for dysplasia detection
within BE

One hundred eighteen different patients were included. Lesions were

randomly split (computer generated) into training, validation and

testing sets with no overlap of data. Each set was stratified to ensure

consistent proportions of patients (Figure 1). The network was

trained using a total of 148,936 frames. No areas of dysplasia were

specifically delineated. A heatmap was generated which showed the

likelihood of dysplasia in each pixel in the image. In the testing set of

44 patients, six i‐scan one images and six WL images were randomly

selected per patient. Two expert delineations per image on 86

dysplastic images from 28 patients helped test the reliability of the

computer‐generated heat map outputs. Refer to supplementary Ta-

ble 1 for a breakdown of the test set based on location, histology and

Paris classification.

Model 2: Segmentation convolutional neural network
for localisation of dysplasia within BE with targeted
biopsies and delineations

We trained a model with a FCNResnet50 architecture to classify

pixels as dysplastic or non‐dysplastic using still images with an

expert delineation of an area of dysplasia. The backbone of the

model was trained from an external data set (Gastrointestinal

Artificial Intelligence Diagnostic System).24 The output was a seg-

mentation map where pixel values ranged between 0 (no dysplasia)

and 1 (dysplasia present). The gold standard was two expert de-

lineations per still image which matched with areas of histologi-

cally confirmed dysplasia (Supplementary Figure 2). Further

algorithm details can be found in the supplementary section.

Segmentation model data set for localisation of
dysplasia within BE with targeted biopsies and
delineations

One hundred ninety‐two images containing BE dysplasia from 64

different patients were each delineated by two experts for

dysplastic areas. These images were randomly selected. Further

model details are in Figure 1. The patients in the independent

training, validation and testing set for this model were allocated

to the same three groups in the classification model to minimise

bias with no overlap of data or patients. The delineations of one

expert were used to train the model. In the testing set the de-

lineations of all experts were used to test the output predictions

of the CNN versus the union of expert delineations and area of

overlap. For each image of BE dysplasia, the model generated a

prediction for delineation of the area of dysplasia and targeted

biopsies.

Comparison of the performance of the convolutional
neural network versus endoscopists

Sixty one i‐scan one images from the testing set were randomly

selected (28 dysplastic, 33 non dysplastic). Six non expert
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endoscopists with greater than 3 years of endoscopic experience

assessed for the presence/absence of dysplasia on each image. The

performance of the CNN in detecting dysplasia was compared to

endoscopists.

Statistical analysis

Descriptive statistics consisted of the mean (+/− standard deviation).

We measured the sensitivity and specificity at a per‐image and per

patient level. The area under the receiver operator curve (AUC) was

calculated. Further details are in the supplementary section.

RESULTS

Model 1: Classifier

Per image classification

In the test set the neural network detected dysplasia on i‐scan 1

images with an AUC of 93%, sensitivity of 91% and specificity of 79%.

The AUC was 10% greater than on WL (Table 1; Figure 2). The i‐scan
1 and WL experiments were on the same patients but were two in-

dependent experiments where the training data set of i‐scan 1 was

larger.

Heat maps generated from the classifier trained on video seg-

ments, once thresholded, overlapped with at least one expert

delineation in 98% of the i‐scan 1 test set images where a true

diagnosis of dysplasia was made based on a minimum of 1 pixel of

overlap (Figure 3). With a Dice coefficient overlap greater than 20%,

78% of the heat maps overlapped with the union of experts at this

threshold.

False negative and positive classification results on
i‐scan 1 images

Sixteen out of 168 dysplastic i‐scan one images in the testing set had

a false negative classification, and 11/16 of these images were from

three patients. Twenty out of 96 NDBE i‐scan one images showed a

false positive classification, and 18/20 of the false positives were

from three patients (Supplementary Figure 3).

Classification based on histology on i‐scan one images

In the test data set 15 patients had EAC, 11 had HGD, two patients

had LGD and 16 patients had no dysplasia on histology. The CNN

achieved a per image sensitivity of 91% which was almost identical in

all the subgroups (90% EAC; 91% HGD; 92% LGD) and a per image

specificity of 79% in the 16 patients with no dysplasia.

TAB L E 1 Performance metrics of the classifier model on iscan‐1 and unenhanced white light (WL) imaging in the test data set

Tested on AUC Sens Spec Accuracy

Number of

dysplastic patients

Number of NDBE

patients

No. of dysplastic

images

No. of NDBE

images

I‐scan 1 93% 91% 79% 86% 28 16 168 96

Unenhanced WL 83% 92% 73% 83% 18 14 108 84

Abbreviations: AUC; area under the receiver operator curve, WL; White light, Sens; Sensitivity, Spec; Specificity.
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F I GUR E 2 AUC performance of the classifier algorithm on iscan‐1 (a) and unenhanced white light (WL) (b)
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Per patient classification results

Using a minority voting approach on i‐scan 1 images, where at least

2 of the 6 images presented for each patient were correctly diag-

nosed as dysplastic, the CNN achieved a per patient sensitivity of

100%. Using a majority voting approach where at least 4 of 6 im-

ages were correctly diagnosed, the sensitivity for dysplasia detec-

tion was 89.3%.

Model 2: Localisation of dysplasia in BE

Localisation of points of interest for targeted biopsies

Four different scenarios for localisation of points of interests were

generated (Table 2). A targeted biopsy was deemed correct if it fell

within the area outlined by expert delineation which matched his-

tology. Further information of algorithm development is in the sup-

plementary section.

Expert consensus determined that the optimal scenario would

be to recommend two points of interests for biopsies. This balances

the number of necessary biopsies with high performance. Based on

this, the system recommended targeted biopsies in areas of the

union of expert delineations with a sensitivity of 91% in the model

two test set of 28 dysplastic patients and 78% in the intersection of

expert delineations (Figure 4, Table 2). When allowing the system

to generate any number of targeted biopsy predictions, the sensi-

tivity for localising dysplasia was 97% in the union of expert de-

lineations (Table 2).

Localisation with delineation

The delineation outline prediction for an area of dysplasia gener-

ated by the segmentation model overlapped with at least one

expert delineation in 98% of images with a minimum of one pixel of

overlap (Figure 4b). This suggested the model is pointing in the

right direction. The segmentation delineation had a 50% average

Dice score with expert 1 (including the false negative predictions in

this result).

Speed of detection of BE dysplasia

The mean (+/− standard deviation) time for the classifier analysis of

each image was 0.021 s per image (+/− 0.008), or 48 frames per

second (fps). The mean time for the segmentation network to delin-

eate dysplasia on each image was 0.018 s (+/− 0.006) or 56 fps.

���

���

���

���

���

���

(a) (b) (c)

F I GUR E 3 Heat map outputs from the classifier model trained on video frame segments without delineations using an indirectly

supervised approach. (a) Original image, (b) expert delineation, (c) heat map generated by the classifier. On the heat maps, the pixels are
coloured based on their dysplastic content according to the model. Red areas (closer to 1), show the most likely dysplastic pixels and therefore
optimal area for a targeted biopsy
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Comparison of the performance of the convolutional
neural network versus endoscopists in the detection
of dysplasia on i‐scan 1 images

On a subset of testing set images 6 non expert endoscopists detected

dysplasia with a mean sensitivity of 79% and specificity of 49%. The

CNN classified dysplasia with a sensitivity of 96% and specificity of

88% on the same images (Table 3).

DISCUSSION

We demonstrate for the first time a CAD system which can accu-

rately detect early neoplasia in BE using Pentax endoscopes. It has a

per image sensitivity and specificity of 91% and 79%, respectively, on

i‐scan 1 imaging. The heat map generated by the indirectly supervised

learning algorithm, once thresholded, overlaps with at least one

expert endoscopist in 98% of images with a minimum of one pixel of

overlap. We have developed a second, directly supervised, CNN

which can localise points of interest to detect dysplasia with a

sensitivity of up to 97%.

In current practice endoscopists perform ‘pull throughs’ in the

esophagus during BE surveillance and take targeted biopsies. An

indirectly supervised machine learning approach, can potentially be a

promising methodology to identify an area of interest in BE with heat

map overlays. It works fast, within 20 milliseconds, without the need

for specialised expert delineations of every frame as in previous

studies.19 This however needs a much larger data set and further

studies to assess its true value in terms of localisation performance.

We developed a second segmentation algorithm which allows a high

accuracy for localising targeted biopsies with high detection speeds.

This creates a two‐stage CAD algorithm which can be translated into

TAB L E 2 Targeted biopsy predictions generated by the CNN

Mean number of

biopsy
predictions by the

CNN

Maximum number

of biopsy
predictions by the

CNN

Proportion of

biopsies within
expert 1

delineation

Proportion of

biopsies within
expert 2

delineation

Proportion of

biopsies within
intersection of

delineations

Proportion of

biopsies within
union of

delineations

Scenario 1 (1 max pix

value)

1 1 81% 74% 71% 85%

Scenario 2 (1 max pix

value + 1

geometric centre)

2 2 88% 81% 78% 91%

Scenario 3 (1 max pix

value + up to 2

geometric

centres)

3 3 91% 85% 81% 93%

Scenario 4 (1 max pix

value + all

geometric

centres)

3 5 94% 90% 86% 97%

Note: Different scenarios were generated assessing where the targeted biopsies fall within the gold standard expert delineations which matched areas

of histologically confirmed dysplasia in videos. Based on expert consensus scenario 2 was considered the most clinically relevant and user friendly at the

same time.

(a) (b)

F I GUR E 4 Images with BE dysplasia (a) and targeted biopsy
and delineation predictions relative to the expert ground truth
(b) by the Artificial intelligence (AI) system. Delineations (Green and
purple outline) = 2 different expert delineations. Blue shaded

delineation = delineation prediction by the convolutional neural
network (CNN). Orange and red dot = point of interest/targeted
biopsy predicitons by the AI system based on scenario 2 (Table 2)
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a working unit in real time where the system generates predictions

on freeze frames taken as per standard of care (Supplementary

Figure 4). We use two models because of annotated data availiability.

To use a delineation model to both, detect and delineate more data is

needed. In terms of real‐time analysis, delineation models are slower

than classification ones. Our current set up allows for faster, real

time, classification than with a single delineation model, and a slower

(but still fast) delineation on demand.

We chose to use an indirect learning approach to generate heat

map outputs from the classifier to assess whether they would help

endoscopists to identify areas of interest in BE without the need of

expert delineations to train, to provide insight into the classifier's

predictions, and to compare to the segmentation output using a

directly supervised learning approach to assess the potential impli-

cations on the way we train and process data when developing BE

CAD systems. The outputs suggest that the model focuses on

important dysplastic features.

Van der Sommen et al developed a computer algorithm using

100 still images. The system identified early BE dysplasia with a

sensitivity and specificity of 83%.19 This is much earlier work and

further work has been done more recently. Von Ebigbo et al.20

demonstrated a promising CNN trained on still images which de-

tects early BE cancer. De Groof et al produced a promising CAD

system using five independent endoscopy sets with high quality BE

images.11 We trained the classification neural network on a large

number of images (148,936 frames) from a large number of indi-

vidual patients (n = 64) each with a video assessment. We also

trained on still images like in previous studies but use multiple

frames per video to maximise the training data set and provide

more valuable information for the CNN's. The CNN achieved high

sensitivities in detecting EAC and HGD but also LGD. Previous

studies did not include LGD. We felt it was important to include

this subgroup in our data as these lesions are often upstaged on

EMR to HGD or EAC.

Previous studies trained and tested networks on Olympus and

Fujinon endoscopy systems for the detection of BE.10,11,18 Ours is the

first study developing a CNN using the Pentax system. I‐scan one is

often the default imaging modality on these systems as this provides

the natural colour tone of WL and added advantage of surface

enhancement. Therefore, the training set was predominantly

composed of I‐scan 1 as opposed to WL. Our results hint towards

improved performance of the classifier model on i‐scan 1 versus WL.

However, of note the data set for i‐scan 1 was larger than that of WL

and matched studies are needed to directly compare the perfor-

mance of the two.

Seattle protocol biopsies on a surveillance endoscopy will sample

a small surface area of a BE segment.6 We developed a CNN using a

segmentation algorithm which is able to localise dysplasia with point

of interest predictions with an accuracy of up to 97%. Biopsy positive

patients can be referred for curative endotherapy. An AI system for

BE is more useful in district general hospitals where the targeted

biopsy function during a pull through will be useful. Experts in

teaching centres will then perform a resection relying more on

magnification imaging to delineate lesions.

Studies have developed systems which are able to detect

dysplasia in BE at varying speeds. De Groof et al.10,11 developed

systems which were able to detect dysplasia at a speed of 1.051 and

0.191 s per image. Our network performed in real time with a mean

speed of 0.021 s per image. To fairly compare the speed of the sys-

tems, they need to be benchmarked on the same machine. However,

the results show that our system will be able to support endoscopists'

decision‐making in real time.

Six images per case were selected for the testing set to simulate

the clinical workflow, where relevant endoscopic images would be

taken. A previous pilot study tested the performance of a CAD sys-

tem during live endoscopy assessment of BE on freeze frames. They

used a majority and minority voting approach to label an area of BE

as dysplastic.25 The per patient sensitivity was 90% in both analyses.

In our current model using a minority and majority voting approach

where at least 2/6 and 4/6 correctly classified images are necessary,

we achieve a per patient sensitivity of 100% and 89.3% respectively

on i‐scan one images.

The CAD system in our study performed better than all 6 non

expert endoscopists with a range of 3–11 years of endoscopic

experience. This is the cohort for whom a BE CAD system would be

most beneficial. A smaller subset of images was randomly selected for

this experiment as it will mean endoscopists will be more likely to

complete the task. The AI system performed better on this subset

however when comparing the endoscopists performance to the AI

system performance on the whole data set it is still weaker.

TAB L E 3 Comparison of the performance of the Artificial intelligence (AI) system versus 6 non expert endoscopists

Per image sensitivity Per image specificity Mean

Endoscopist 1 23/28 (82%) 19/33 (58%)

Endoscopist 2 21/28 (75%) 12/33 (36%) Sensitivity = 79%

Endoscopist 3 16/28 (57%) 22/33 (67%)

Endoscopist 4 24/28 (86%) 22/33 (67%) Specificity = 49%

Endoscopist 5 22/28 (79%) 15/33 (46%)

Endoscopist 6 26/28 (93%) 7/33 (21%)

AI system 27/28 (96%) 29/33 (88%)
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There are limitations in this current study. We developed a

model which is trained using videos from a single endoscopic

system. Ideally, to allow for more generalisation, we would incor-

porate data from other systems. The current CNN is tested on

higher quality still images. However, our training strategy and data

selection would allow us now to develop networks which could

potentially work better on whole video data in real time. Another

limitation is the threshold for neoplasia detection was based on

the test set. However, the performace can be compared indepen-

dently of the threshold selection by looking at the AUC scores. It

is important to test the threshold selection on an independent,

hold out, data set, which was not available at the time. Another

limitation is the testing set in ‘model 2’ (segmentation) was 86

images. Ideally, we would have selected a larger test set however

in this model these images were all required to be delineated by

experts. For the purposes of the available time of experts and to

complete the task a smaller data set of images was selected. This

problem could be rectified in future by selecting a broader range

of experts. The data set for i‐scan 1 was larger than that of WL.

This should be kept in mind when looking at the improved per-

formance on i‐scan 1 versus WL in the classification of dysplasia.

In future we will perform matched studies comparing the two light

modalities where both cohorts are matched in terms of number of

images, histology and Paris classification of lesions. Another po-

tential limitation is the segmentation model was trained based on

the delineations of one expert. In future to help improve our re-

sults further we will aim to train the model using the intersection

of expert delineations to improve the localisation ability of the

CAD system.

We demonstrate a CAD system which is able to detect BE

dysplasia with high accuracy on a per image and per patient level. It

localises areas of interest with targeted biopsies with high sensitiv-

ities. Our next step is allowing this to work in real time with whole

video predictions.
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